
Parallelism
in PostgreSQL 11

Thomas Munro | 2019.fosdempgday.org

• PostgreSQL developer

• Member of EnterpriseDB’s
database server development
team, based in New Zealand

• Worked on Parallel Hash and
parallel query infrastructure

• Currently working on undo logs,
…

thomas.munro@enterprisedb.com  
tmunro@postgresql.org  
tmunro@freebsd.org
@MengTangmu

About me/us Architects of parallelism: Robert Haas, Amit Kapila;
Contributors: Ashutosh Bapat, Jeevan Chalke,

Mithun Cy, Andres Freund, Peter Geoghegan, Kuntal
Ghosh, Alvaro Hererra, Amit Khandekar, Dilip Kumar,

Tom Lane, Amit Langote, Rushabh Lathia, Noah
Misch, Thomas Munro, David Rowley, Rafia Sabih,

Amul Sul, …

mailto:thomas.munro@enterprisedb.com
mailto:tmunro@postgresql.org
mailto:tmunro@freebsd.org

Parallel features
• PostgreSQL 9.4, 9.5 [2014, 2015]

• Infrastructure: Dynamic shared
memory segments

• Infrastructure: Shared memory
queues

• Infrastructure: Background
workers

• PostgreSQL 9.6 [2016]

• Executor nodes: Gather, Parallel
Seq Scan, Partial Aggregate,
Finalize Aggregate

• Not enabled by default

• PostgreSQL 10 [2017]

• Infrastructure: Partitions

• Executor nodes: Gather Merge,
Parallel Index Scan, Parallel Bitmap
Heap Scan

• Enabled by default!

• PostgreSQL 11 [2018]

• Executor nodes: Parallel Append,
Parallel Hash Join

• Planner: Partition-wise joins,
aggregates

• Utility: Parallel CREATE INDEX

Historical context

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

“The free lunch is over*”

*H
er

b
Su

tte
r,

w
rit

in
g

in
 2

00
4

Multi-processing
for the masses

• 1960s, 1970s: Burroughs B5000 (AMP), later IBM
System/360 mainframes (AMP), later vector
supercomputers (CDC, Cray), …: million of dollars

• Early 1980s: VAX (AMP) minicomputers, 2 CPUs (AMP)
running VMS $400k+

• Mid-late 1980s: Sequent, 4-30 Intel CPUs 
(SMP, NUMA) running Dynix: $50k - $500k

• Early 1990s: “big iron” Unix vendors (SMP/NUMA),
$20k+

• Mid-late 90s: sub-$10k dual/quad Intel CPU servers,
free Unix-like OSes add support for SMP

• Mid 2000s: multi-core CPUs; general purpose
uniprocessor operating systems and hardware extinct

Parallel gold rush

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

7.1Oracle

DB2 4.1

POSTGRES, PostgreSQL 9.6

6.0Informix

Sybase 11.5

SQL Server 7.0

Ingres 2006

= SQL trapped inside IBM= QUEL refusing to admit that SQL won= SQL = parallel query execution

Tandem NonStop SQL beat all of these with a shared-
nothing multi-node database used by banks and stock

exchanges since the 1980s. Originally focused on
redundancy, it also scaled well with extra CPUs. Not in

the same category because…

Shared everything vs
shared nothing

• SMP/NUMA: multiple CPU
cores sharing memory and
storage

• MPP/cluster: a network of
nodes with separate
memories and storage,
communicating via
messages

• Overlapping problems,
and some MPP systems
may also have intra-node
shared memory

} The topic of this talk

Simple example: 
vote counting for a referendum
• Scrutineers:

• Grab any ballot
box and count up
all the votes
(= scatter data
and process it)

• Repeat until there
are no more boxes

• Chief scrutineer:

• Wait until everyone
has finished

• Gather the
subtotals and sum
them

© Ipswitch Star

EXPLAIN ANALYZE SELECT COUNT(*)  
 FROM votes
 WHERE choice = ‘Shoot Own Foot’;

 Aggregate (cost=181813.52..181813.53 rows=1 width=8)
 (actual time=2779.089..2779.089 rows=1 loops=1)
 -> Seq Scan on votes (cost=0.00..169247.71 rows=5026322 width=0)
 (actual time=0.080..2224.036 rows=5001960 loops=1)
 Filter: (choice = ‘Shoot Own Foot’::text)
 Rows Removed by Filter: 4998040
 Planning Time: 0.101 ms
 Execution Time: 2779.142 ms

 Finalize Aggregate (cost=102567.18..102567.19 rows=1 width=8) 
 (actual time=1029.424..1029.424 rows=1 loops=1)
 -> Gather (cost=102566.97..102567.18 rows=2 width=8)
 (actual time=1029.233..1030.188 rows=3 loops=1)
 Workers Planned: 2
 Workers Launched: 2
 -> Partial Aggregate (cost=101566.97..101566.98 rows=1 width=8)
 (actual time=1023.294..1023.295 rows=1 loops=3)
 -> Parallel Seq Scan on votes (cost=0.00..96331.21 rows=2094301 width=0)
 (actual time=0.079..824.345 rows=1667320 …)
 Filter: (choice = ‘Shoot Own Foot’::text)
 Rows Removed by Filter: 1666013
 Planning Time: 0.126 ms
 Execution Time: 1030.279 ms

max_parallel_workers_per_gather = 2

max_parallel_workers_per_gather = 0

Parallel plan

Seq ScanParallel Seq
Scan

Partial
Aggregate

Partial
Aggregate

Partial
Aggregate

Gather

Finalize
Aggregate

Parallel Seq
Scan

Parallel Seq
Scan

• Each worker (W)
runs a copy of the
plan fragment
beneath the
Gather node

• The leader
process (L) may
also run it

• Parallel-aware
nodes coordinate
their activity with
their twins in other
processes

LW W

} Scatter

} Gather

What’s happening
under the covers?

Processes Memory IPC

Executor

IO

Planner

} Let’s
start
here

Processes
13316 └─ postgres -D /data/clusters/main
13441 ├─ postgres: fred salesdb [local] idle
13437 ├─ postgres: fred salesdb [local] idle
13337 ├─ postgres: fred salesdb [local] SELECT
13323 ├─ postgres: logical replication launcher 
13322 ├─ postgres: stats collector
13321 ├─ postgres: autovacuum launcher
13320 ├─ postgres: walwriter
13319 ├─ postgres: background writer
13318 └─ postgres: checkpointer

"Currently, POSTGRES runs as one process for each active user. This was done
as an expedient to get a system operational as quickly as possible. We plan on
converting POSTGRES to use lightweight processes available in the operating
systems we are using. These include PRESTO for the Sequent Symmetry and

threads in Version 4 of Sun/OS."

Stonebraker, Rowe and Herohama, “The Implementation of POSTGRES”, 1989

Parallel worker processes
13316 └─ postgres -D /data/clusters/main 
25002 ├─ postgres: parallel worker for PID 13337 
25001 ├─ postgres: parallel worker for PID 13337
13441 ├─ postgres: fred salesdb [local] idle
13437 ├─ postgres: fred salesdb [local] idle
13337 ├─ postgres: fred salesdb [local] SELECT
13323 ├─ postgres: logical replication launcher 
13322 ├─ postgres: stats collector
13321 ├─ postgres: autovacuum launcher
13320 ├─ postgres: walwriter
13319 ├─ postgres: background writer
13318 └─ postgres: checkpointer

Currently, PostgreSQL uses one process per parallel worker.
This was done as an expedient to get a system operational
as quickly as possible. We plan on converting PostgreSQL

to use POSIX and Windows threads.*
*Actual plans may vary

L

Shared memory
• Traditionally, PostgreSQL has

always had a fixed-sized chunk of
shared memory mapped at the
same address in all processes,
inherited from the postmaster
process

• For parallel query execution,
“dynamic” shared memory
segments (DSM) are used; they
are chunks of extra shared
memory, mapped at an arbitrary
address in each backend, and
unmapped at the end of the query

Buffer pool

DSM
for

query

L L

W

W

L = Leader process

W = Worker process

IPC and communication
• PostgreSQL already had various

locking primitives and atomic
primitives, but several new things were
needed for parallel query execution

• Shared memory queues for control
messages and tuples

• Condition variables, barriers,
relocatable LWLocks

• Special support in heavyweight
locks

• …

Tuple
queue

L

W

DSM

Processes Memory IPC

Executor

IO

Planner

} Mechanics
of execution

Parallel awareness
• Nodes without “Parallel” prefix can be

called “parallel-oblivious*” operators:

• They can appear in a traditional non-
parallel plan

• They can appear underneath a Gather
node, receiving partial results

• They can appear underneath a Gather
node, receiving complete results

• Parallel-aware operators perform some
kind of scattering (or in some cases
gathering)

*my terminology, because “non-parallel” is a bit confusing

Parallel Seq
Scan

Parallel
Hash

Seq Scan Hash

8kb 8kb 8kb 8kb

Parallel Seq Scan

• Each process advances a shared ‘next block’ pointer to choose an 8KB block
whenever it runs out of data and needs more, so that they read disjoint sets of
tuples

• The goal is not to read in parallel, but rather to scatter the data among the
CPU cores where it can be (1) filtered in parallel and (2) processed by higher
executor nodes in parallel

W WL

next

…

Operating system view

8kb 8kb 8kb 8kb

4kb

W W

8kb 8kb

L

8kb

32kb (or 128kb, or …) 32kb

• Processes read
8kb pages into
the PostgreSQL
buffer pool

• The OS’s read-
ahead heuristics
detects this
pattern and
ideally begins
issuing larger
reads to the disk
to pre-load OS
page cache
pages

• Details vary: for
Linux, see the
read-ahead
window size

4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb 4kb

Parallel Index Scan
• BTree only for now

• Same concept: advancing
a shared pointer, but this
time there is more
communication and
waiting involved

• If you’re lucky, there might
be runs of sequential leaf
pages, triggering OS
read-ahead heuristics next

WL

Parallel Bitmap Heap Scan

• Similar to Parallel Seq Scan, but scan only pages
that were found to potentially contain interesting
tuples

• The bitmap is currently built by a single process;
only the actual Parallel Bitmap Heap Scan is
parallel-aware (in principle the Bitmap Index Scan
could be too)

Let’s add a join to the
example

© Sunshine Coast Daily

• Count only
votes from
voters who
are enrolled
to vote

SELECT COUNT(*)  
 FROM votes  
 JOIN voters USING (voter_id)

Nest Loop Join
Gather

{Scatter

{Gather

Parallel Seq
Scan

Nest Loop
Join

Index Scan

Probe

Probe

Probe

Probe

Time

Non-parallel

Parallel

Perfectly spherical cow in a vacuum

“Parallel-
oblivious” join

Indexes are
already efficiently
shared between

backends

Hash
table

Hash
table

Hash Join
Gather

{ }
D

up
lic

at
ed

 e
ffo

rtScatter

{Gather

Parallel Seq
Scan

Hash Join

Hash
Private
hash
table

Seq Scan
Build

Probe

Time

Probe

Build

Build

Build

Probe

Probe

Non-parallel

Parallel

Hash
table

Hash
table

Hash Join
Gather

{Scatter

{Gather

Parallel Seq
Scan

Hash Join

Hash
Private
hash
table

Parallel Seq
Scan

We cannot join
arbitrarily chosen
blocks from two
relations. The

results would be
nonsense!

Parallel Hash Join
Gather

{Scatter

{Gather

} Scatter

} GatherParallel Seq
Scan

Parallel
Hash Join

Parallel
Hash

Parallel Seq
Scan

Shared
hash
table

Build

Probe

Time

Probe

Build

Build

Build

Probe

Probe

Non-parallel

Parallel

Single batch hash join

Sp
ee

d-
up

1x

2x

3x

4x

5x

6x

Number of workers

0 1 2 3 4 5 6 7 8

Hash Parallel Hash

Parallel Hash Join with
alternative strategies

• Some other systems partition the data first with an extra pass
through the two relations, and then produce many small private
hash tables; they aim to win back time by reducing cache misses

• We can do a simple variant of that (see “batches” in EXPLAIN
ANALYZE), but we only choose to do so if the hash table would
be too big for work_mem (no attempt to reduce cache misses)

• If both relations have a pre-existing and matching partition
scheme, we can do a partition-wise join (about which more soon)

• Some other systems can repartition one relation to match the
pre-existing partition scheme of the other relation

Merge Join
Gather

{Scatter

{Gather

Parallel
Index Scan

Merge Join

Index Scan

Merge Join
Gather

{Scatter

{Gather

Parallel
Index Scan Hash

table
Hash
table }

D
up

lic
at

ed
 e
ffo

rtSort
Private
sorted
tuples

Seq Scan

Merge Join

No facility for parallel
sorting in the executor
yet (though CREATE

INDEX can)

Partition-wise join

Seq Scan

Hash Join

Seq Scan

Append

Seq Scan

Hash Join

Seq Scan

votes_england voters_england votes_scotland voters_scotland

If two relations are partitioned in a compatible way, we can covert a simple join into a set of
joins between individual partitions. This is disabled by default in PostgreSQL 11:

SET enable_partitionwise_join = on to enable it.

Parallel Append

Seq Scan

Hash Join

Seq Scan Seq Scan

Hash Join

Seq Scan

votes_england voters_england votes_scotland voters_scotland

Parallel
Append

Parallel Append’s children can be parallel oblivious nodes only, run in a single
process, or include a parallel scan, or a combination of children. This can

extract coarse-grained parallelism from cases where block-based parallelism
isn’t possible.

Processes Memory IPC

Executor

IO

Planner } Decisions
and

controls

Cost-based planner
• Think of all the ways you could execute a query: we

call those “paths”

• Estimate the runtime of each in abstract cost units
(inputs: statistics, GUCs)

• Pick the cheapest path and convert it into a plan ready
for execution

• For block-based parallelism, we introduce “partial”
paths.

• For partition-based parallelism, the partitions are
represented by appending different paths (which may
themselves be partial).

Rule-based parallel degree
• Number of workers to consider is based on the “driving” table and settings:

• ALTER TABLE … SET (parallel_workers = N)

• SET min_parallel_table_scan_size = ‘8MB’ 
8MB → 1 worker 
24MB → 2 workers 
72MB → 3 workers 
x → log(x / min_parallel_table_scan_size) / log(3) + 1 workers

• SET min_parallel_index_scan_size = ‘512kB’

• Number of workers is capped:

• SET max_parallel_workers_per_gather = 2

Costs
• SET parallel_setup_cost = 1000

• Models the time spent setting up memory, processes and
initial communication

• Discourages parallel query for short queries

• SET parallel_tuple_cost = 0.1

• Models the cost of sending result tuples to the leader process

• Discourages parallel query if large amounts of results have to
be sent back

Memory
• SET work_mem = ‘4MB’

• Limit the amount of memory used by each executor node — in
each process!

• The main executor nodes affected are Hash and Sort nodes

• In hash join heavy work, the cap is effectively 
work_mem × processes × joins

• Beware partition join explosions

• Other systems impose whole query or whole system memory
budgets — we probably should too.

Some things that prevent 
or limit parallelism

• CTEs (WITH …) — for now, try rewriting as a subselect

• FULL OUTER JOINs — are not supported yet (but could in principle be
done with by Parallel Hash Join)

• No FDWs currently support parallelism (but they could!)

• Cursors

• max_rows (set by GUIs like DbVisualizer)

• Queries that write or lock rows

• Functions not marked PARALLEL SAFE

• SERIALIZABLE transaction isolation (for now)

Possible future work
• Parallel sorting?

• Dynamic repartitioning?

• Better control of memory usage?

• More efficient use of processes/threads?

• Parallel CTEs, inlined CTEs [Commitfest #1734]

• Cost-based planning of number of workers?

• Parallel aggregation that doesn’t terminate parallelism?

• Writing with parallelism (no gather!)

Selected parallel hacker blogs:

• ashutoshpg.blogspot.com/2017/12/
partition-wise-joins-divide-and-
conquer.html

• amitkapila16.blogspot.com/2015/11/
parallel-sequential-scans-in-play.html

• write-skew.blogspot.com/2018/01/
parallel-hash-for-postgresql.html

• rhaas.blogspot.com/2017/03/parallel-
query-v2.html

• blog.2ndquadrant.com/parallel-monster-
benchmark/

• blog.2ndquadrant.com/parallel-
aggregate/

• www.depesz.com/2018/02/12/waiting-
for-postgresql-11-support-parallel-btree-
index-builds/

• Questions?

• Any good/bad
experiences you want
to share? What
workloads of yours
could we do better on?

• PostgreSQL 11 was
released October 2018,
available from a
package repository
near you!

http://ashutoshpg.blogspot.com/2017/12/partition-wise-joins-divide-and-conquer.html
http://ashutoshpg.blogspot.com/2017/12/partition-wise-joins-divide-and-conquer.html
http://ashutoshpg.blogspot.com/2017/12/partition-wise-joins-divide-and-conquer.html
http://amitkapila16.blogspot.com/2015/11/parallel-sequential-scans-in-play.html
http://amitkapila16.blogspot.com/2015/11/parallel-sequential-scans-in-play.html
https://write-skew.blogspot.com/2018/01/parallel-hash-for-postgresql.html
https://write-skew.blogspot.com/2018/01/parallel-hash-for-postgresql.html
http://rhaas.blogspot.com/2017/03/parallel-query-v2.html
http://rhaas.blogspot.com/2017/03/parallel-query-v2.html
http://blog.2ndquadrant.com/parallel-monster-benchmark/
http://blog.2ndquadrant.com/parallel-monster-benchmark/
http://blog.2ndquadrant.com/parallel-aggregate/
http://blog.2ndquadrant.com/parallel-aggregate/
http://www.depesz.com/2018/02/12/waiting-for-postgresql-11-support-parallel-btree-index-builds/
http://www.depesz.com/2018/02/12/waiting-for-postgresql-11-support-parallel-btree-index-builds/
http://www.depesz.com/2018/02/12/waiting-for-postgresql-11-support-parallel-btree-index-builds/

