
Mvcc Unmasked

BRUCE MOMJIAN

This talk explains how Multiversion Concurrency Control (MVCC) is

implemented in Postgres, and highlights optimizations which

minimize the downsides of MVCC.

HTTPS://MOMJIAN.US/PRESENTATIONSCREATIVE COMMONS ATTRIBUTION LICENSE

LAST UPDATED: JULY, 2020

1 / 90

Unmasked: Who Are These People?

https://www.flickr.com/photos/danielsemper/

2 / 90

Unmasked: The Original Star Wars Cast

Left to right: Han Solo, Darth Vader, Chewbacca, Leia, Luke Skywalker,
R2D2,

3 / 90

Why Unmask MVCC?

◮ Predict concurrent query behavior

◮ Manage MVCC performance effects

◮ Understand storage space reuse

4 / 90

Outline

1. Introduction to MVCC

2. MVCC Implementation Details

3. MVCC Cleanup Requirements and Behavior

5 / 90

What is MVCC?

Multiversion Concurrency Control (MVCC) allows Postgres to offer

high concurrency even during significant database read/write activity.
MVCC specifically offers behavior where "readers never block writers,

and writers never block readers".

This presentation explains how MVCC is implemented in Postgres,

and highlights optimizations which minimize the downsides of

MVCC.

6 / 90

Which Other Database Systems Support MVCC?

◮ Oracle

◮ DB2 (partial)

◮ MySQL with InnoDB

◮ Informix

◮ Firebird

◮ MSSQL (optional, disabled by default)

7 / 90

MVCC Behavior

INSERT

UPDATE

DELETE

old (delete)

new (insert)

Exp
Cre 40

Exp
Cre 40

47

Exp
Cre 64

78

Exp
Cre 78

8 / 90

MVCC Snapshots

MVCC snapshots control which tuples are visible for SQL statements.

A snapshot is recorded at the start of each SQL statement in READ

COMMITTED transaction isolation mode, and at transaction start in

SERIALIZABLE transaction isolation mode. In fact, it is frequency of

taking new snapshots that controls the transaction isolation behavior.

When a new snapshot is taken, the following information is

gathered:

◮ the highest-numbered committed transaction

◮ the transaction numbers currently executing

Using this snapshot information, Postgres can determine if a

transaction’s actions should be visible to an executing statement.

9 / 90

MVCC Snapshots Determine Row Visibility

Visible

Invisible

Invisible

Create−Only

Create & Expire

Visible

Visible

Internally, the creation xid is stored in the system column ’xmin’, and expire in ’xmax’.

Invisible

Exp
Cre 30

Exp
Cre 50

Cre
Exp

30
110

Exp
Cre 30

75

Exp
Cre 30

80

Exp
Cre 110

For simplicity, assume all other
transactions are committed.

Open Transactions: 25, 50, 75

The highest−numbered
committed transaction: 100

Snapshot

Sequential Scan

10 / 90

MVCC Snapshot Timeline

0 25 50 75 100 125

current xid
snapshot’stransaction

id (xid)

start
xid 110

stop

Green is visible. Red is invisible.

Only transactions completed before transaction id 100 started are

visible.

11 / 90

Confused Yet?

Source code comment in src/backend/utils/time/tqual.c:
((Xmin == my-transaction && inserted by the current transaction
Cmin < my-command && before this command, and
(Xmax is null || the row has not been deleted, or
(Xmax == my-transaction && it was deleted by the current transaction
Cmax >= my-command))) but not before this command,

|| or
(Xmin is committed && the row was inserted by a committed transaction, and

(Xmax is null || the row has not been deleted, or
(Xmax == my-transaction && the row is being deleted by this transaction
Cmax >= my-command) || but it’s not deleted "yet", or

(Xmax != my-transaction && the row was deleted by another transaction
Xmax is not committed)))) that has not been committed

mao [Mike Olson] says 17 march 1993: the tests in this routine are
correct; if you think they’re not, you’re wrong, and you should think
about it again. i know, it happened to me.

12 / 90

Implementation Details

All queries were generated on an unmodified version of Postgres.
The contrib module pageinspect was installed to show internal heap

page information and pg_freespacemap was installed to show free

space map information.

13 / 90

Setup

CREATE TABLE mvcc_demo (val INTEGER);

DROP VIEW IF EXISTS mvcc_demo_page0;

CREATE EXTENSION pageinspect;

CREATE EXTENSION pg_freespacemap;

CREATE VIEW mvcc_demo_page0 AS
SELECT ’(0,’ || lp || ’)’ AS ctid,

CASE lp_flags
WHEN 0 THEN ’Unused’
WHEN 1 THEN ’Normal’
WHEN 2 THEN ’Redirect to ’ || lp_off
WHEN 3 THEN ’Dead’

END,
t_xmin::text::int8 AS xmin,
t_xmax::text::int8 AS xmax,
t_ctid

FROM heap_page_items(get_raw_page(’mvcc_demo’, 0))
ORDER BY lp; 14 / 90

INSERT Using Xmin

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5409 | 0 | 1

All queries used in this presentation are available at https://
momjian.us/main/writings/pgsql/mvcc.sql.

15 / 90

https://momjian.us/main/writings/pgsql/mvcc.sql
https://momjian.us/main/writings/pgsql/mvcc.sql

Just Like INSERT

INSERT

UPDATE

DELETE

old (delete)

new (insert)

Exp
Cre 40

Exp
Cre 40

47

Exp
Cre 64

78

Exp
Cre 78

16 / 90

DELETE Using Xmax

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5411 | 0 | 1

BEGIN WORK;

DELETE FROM mvcc_demo;

17 / 90

DELETE Using Xmax

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5411 | 5412 | 1

SELECT txid_current();
txid_current

5412

COMMIT WORK;

18 / 90

Just Like DELETE

INSERT

UPDATE

DELETE

old (delete)

new (insert)

Exp
Cre 40

Exp
Cre 40

47

Exp
Cre 64

78

Exp
Cre 78

19 / 90

UPDATE Using Xmin and Xmax

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5413 | 0 | 1

BEGIN WORK;

UPDATE mvcc_demo SET val = 2;

20 / 90

UPDATE Using Xmin and Xmax

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5414 | 0 | 2

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5413 | 5414 | 1

COMMIT WORK;

21 / 90

Just Like UPDATE

INSERT

UPDATE

DELETE

old (delete)

new (insert)

Exp
Cre 40

Exp
Cre 40

47

Exp
Cre 64

78

Exp
Cre 78

22 / 90

Aborted Transaction IDs Remain

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

BEGIN WORK;

DELETE FROM mvcc_demo;

ROLLBACK WORK;

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5415 | 5416 | 1

23 / 90

Aborted IDs Can Remain Because

Transaction Status Is Recorded Centrally

028

008

012

016

020

024

000

004

10 Committed

01 Aborted

00 In Progress

Transaction Id (XID)

Status flagsXID

pg_xact

Tuple Creation XID: 15 Expiration XID: 27

xmin xmax

1 0 100 1

0

0

0

0

0

0

0

0 0

0

000

0

0

0

0

0

0

0

1

1

1

1

11

0

00

1

0

1

1

1

0

1

1

11

1

00

0

00

1

0 000

0

0

0

0

0

0

00

Transaction roll back marks the transaction ID as aborted. All

sessions will ignore such transactions; it is not ncessary to revisit each

row to undo the transaction.
24 / 90

Row Locks Using Xmax

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

BEGIN WORK;

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5416 | 0 | 1

SELECT xmin, xmax, * FROM mvcc_demo FOR UPDATE;
xmin | xmax | val
------+------+-----
5416 | 0 | 1

25 / 90

Row Locks Using Xmax

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5416 | 5417 | 1

COMMIT WORK;

The tuple bit HEAP_XMAX_EXCL_LOCK is used to indicate that xmax

is a locking xid rather than an expiration xid.

26 / 90

Multi-Statement Transactions

Multi-statement transactions require extra tracking because each

statement has its own visibility rules. For example, a cursor’s

contents must remain unchanged even if later statements in the same

transaction modify rows. Such tracking is implemented using system

command id columns cmin/cmax, which is internally actually is a

single column.

27 / 90

INSERT Using Cmin

DELETE FROM mvcc_demo;

BEGIN WORK;

INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);

28 / 90

INSERT Using Cmin

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5419 | 0 | 0 | 1
5419 | 1 | 0 | 2
5419 | 2 | 0 | 3

COMMIT WORK;

29 / 90

DELETE Using Cmin

DELETE FROM mvcc_demo;

BEGIN WORK;

INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);

30 / 90

DELETE Using Cmin

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5421 | 0 | 0 | 1
5421 | 1 | 0 | 2
5421 | 2 | 0 | 3

DECLARE c_mvcc_demo CURSOR FOR
SELECT xmin, xmax, cmax, * FROM mvcc_demo;

31 / 90

DELETE Using Cmin

DELETE FROM mvcc_demo;

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----

FETCH ALL FROM c_mvcc_demo;
xmin | xmax | cmax | val
------+------+------+-----
5421 | 5421 | 0 | 1
5421 | 5421 | 1 | 2
5421 | 5421 | 2 | 3

COMMIT WORK;

A cursor had to be used because the rows were created and deleted in

this transaction and therefore never visible outside this transaction.

32 / 90

UPDATE Using Cmin

DELETE FROM mvcc_demo;

BEGIN WORK;

INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);
SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5422 | 0 | 0 | 1
5422 | 1 | 0 | 2
5422 | 2 | 0 | 3

DECLARE c_mvcc_demo CURSOR FOR
SELECT xmin, xmax, cmax, * FROM mvcc_demo;

33 / 90

UPDATE Using Cmin

UPDATE mvcc_demo SET val = val * 10;

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5422 | 3 | 0 | 10
5422 | 3 | 0 | 20
5422 | 3 | 0 | 30

FETCH ALL FROM c_mvcc_demo;
xmin | xmax | cmax | val
------+------+------+-----
5422 | 5422 | 0 | 1
5422 | 5422 | 1 | 2
5422 | 5422 | 2 | 3

COMMIT WORK;

34 / 90

Modifying Rows From Different Transactions

DELETE FROM mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);

SELECT xmin, xmax, * FROM mvcc_demo;
xmin | xmax | val
------+------+-----
5424 | 0 | 1

BEGIN WORK;

INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);
INSERT INTO mvcc_demo VALUES (4);

35 / 90

Modifying Rows From Different Transactions

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5424 | 0 | 0 | 1
5425 | 0 | 0 | 2
5425 | 1 | 0 | 3
5425 | 2 | 0 | 4

UPDATE mvcc_demo SET val = val * 10;

36 / 90

Modifying Rows From Different Transactions

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5425 | 3 | 0 | 10
5425 | 3 | 0 | 20
5425 | 3 | 0 | 30
5425 | 3 | 0 | 40

SELECT xmin, xmax, cmax, * FROM mvcc_demo;
xmin | xmax | cmax | val
------+------+------+-----
5424 | 5425 | 3 | 1

COMMIT WORK;

37 / 90

Combo Command Id

Because cmin and cmax are internally a single system column, it is

impossible to simply record the status of a row that is created and

expired in the same multi-statement transaction. For that reason, a

special combo command id is created that references a local memory

hash that contains the actual cmin and cmax values.

38 / 90

UPDATE Using Combo Command Ids

-- use TRUNCATE to remove even invisible rows

TRUNCATE mvcc_demo;

BEGIN WORK;

DELETE FROM mvcc_demo;
DELETE FROM mvcc_demo;
DELETE FROM mvcc_demo;
INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);

39 / 90

UPDATE Using Combo Command Ids

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5427 | 3 | 0 | 1
5427 | 4 | 0 | 2
5427 | 5 | 0 | 3

DECLARE c_mvcc_demo CURSOR FOR
SELECT xmin, xmax, cmax, * FROM mvcc_demo;

UPDATE mvcc_demo SET val = val * 10;

40 / 90

UPDATE Using Combo Command Ids

SELECT xmin, cmin, xmax, * FROM mvcc_demo;
xmin | cmin | xmax | val
------+------+------+-----
5427 | 6 | 0 | 10
5427 | 6 | 0 | 20
5427 | 6 | 0 | 30

FETCH ALL FROM c_mvcc_demo;
xmin | xmax | cmax | val
------+------+------+-----
5427 | 5427 | 0 | 1
5427 | 5427 | 1 | 2
5427 | 5427 | 2 | 3

41 / 90

UPDATE Using Combo Command Ids

SELECT t_xmin AS xmin,
t_xmax::text::int8 AS xmax,
t_field3::text::int8 AS cmin_cmax,
(t_infomask::integer & X’0020’::integer)::bool AS is_combocid

FROM heap_page_items(get_raw_page(’mvcc_demo’, 0))
ORDER BY 2 DESC, 3;
xmin | xmax | cmin_cmax | is_combocid
------+------+-----------+-------------
5427 | 5427 | 0 | t
5427 | 5427 | 1 | t
5427 | 5427 | 2 | t
5427 | 0 | 6 | f
5427 | 0 | 6 | f
5427 | 0 | 6 | f

COMMIT WORK;

The last query uses /contrib/pageinspect, which allows visibility of

internal heap page structures and all stored rows, including those not

visible in the current snapshot. (Bit 0x0020 is internally called

HEAP_COMBOCID.)

42 / 90

MVCC Implementation Summary

xmin: creation transaction number, set by INSERT and UPDATE

xmax: expire transaction number, set by UPDATE and DELETE;

also used for explicit row locks

cmin/cmax: used to identify the command number that created or

expired the tuple; also used to store combo command

ids when the tuple is created and expired in the same

transaction, and for explicit row locks

43 / 90

Traditional Cleanup Requirements

Traditional single-row-version (non-MVCC) database systems require

storage space cleanup:

◮ deleted rows

◮ rows created by aborted transactions

44 / 90

MVCC Cleanup Requirements

MVCC has additional cleanup requirements:

◮ The creation of a new row during UPDATE (rather than

replacing the existing row); the storage space taken by the old
row must eventually be recycled.

◮ The delayed cleanup of deleted rows (cleanup cannot occur until

there are no transactions for which the row is visible)

Postgres handles both traditional and MVCC-specific cleanup

requirements.

45 / 90

Cleanup Behavior

Fortunately, Postgres cleanup happens automatically:

◮ On-demand cleanup of a single heap page during row access,

specifically when a page is accessed by SELECT, UPDATE, and

DELETE

◮ In bulk by an autovacuum processes that runs in the background

Cleanup can also be initiated manually by VACUUM.

46 / 90

Aspects of Cleanup

Cleanup involves recycling space taken by several entities:

◮ heap tuples/rows (the largest)

◮ heap item pointers (the smallest)

◮ index entries

47 / 90

Internal Heap Page

Page Header Item Item Item

Tuple

Tuple Tuple Special

8K

48 / 90

Indexes Point to Items, Not Tuples

Page Header Item Item Item

Special

8K

Indexes

Tuple1Tuple2

Tuple3

49 / 90

Heap Tuple Space Recycling

Page Header Item Item Item

Special

8K

Indexes

DeadDead

Tuple3

Indexes prevent item pointers from being recycled.

50 / 90

VACUUM Later Recycle Items

Page Header Item Item Item

Special

8K

Indexes

Unused Unused

Tuple3

VACUUM performs index cleanup, then can mark “dead” items as

“unused”.
51 / 90

Cleanup of Deleted Rows

TRUNCATE mvcc_demo;

-- force page to < 10% empty

INSERT INTO mvcc_demo SELECT 0 FROM generate_series(1, 240);

-- compute free space percentage

SELECT (100 * (upper - lower) /
pagesize::float8)::integer AS free_pct

FROM page_header(get_raw_page(’mvcc_demo’, 0));
free_pct

6

INSERT INTO mvcc_demo VALUES (1);

52 / 90

Cleanup of Deleted Rows

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Normal | 5430 | 0 | (0,241)

DELETE FROM mvcc_demo WHERE val > 0;

INSERT INTO mvcc_demo VALUES (2);

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Normal | 5430 | 5431 | (0,241)
(0,242) | Normal | 5432 | 0 | (0,242)

53 / 90

Cleanup of Deleted Rows

DELETE FROM mvcc_demo WHERE val > 0;

INSERT INTO mvcc_demo VALUES (3);

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Dead | | |
(0,242) | Normal | 5432 | 5433 | (0,242)
(0,243) | Normal | 5434 | 0 | (0,243)

In normal, multi-user usage, cleanup might have been delayed

because other open transactions in the same database might still need

to view the expired rows. However, the behavior would be the same,
just delayed.

54 / 90

Cleanup of Deleted Rows

-- force single-page cleanup via SELECT

SELECT * FROM mvcc_demo
OFFSET 1000;
val

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Dead | | |
(0,242) | Dead | | |
(0,243) | Normal | 5434 | 0 | (0,243)

55 / 90

Same as this Slide

Page Header Item Item Item

Special

8K

Indexes

DeadDead

Tuple3

56 / 90

Cleanup of Deleted Rows

SELECT pg_freespace(’mvcc_demo’);
pg_freespace

(0,0)

VACUUM mvcc_demo;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Unused | | |
(0,242) | Unused | | |
(0,243) | Normal | 5434 | 0 | (0,243)

57 / 90

Same as this Slide

Page Header Item Item Item

Special

8K

Indexes

Unused Unused

Tuple3

58 / 90

Free Space Map (FSM)

SELECT pg_freespace(’mvcc_demo’);
pg_freespace

(0,416)

VACUUM also updates the free space map (FSM), which records pages

containing significant free space. This information is used to provide

target pages for INSERTs and some UPDATEs (those crossing page

boundaries). Single-page cleanup does not update the free space map.

59 / 90

Another Free Space Map Example

TRUNCATE mvcc_demo;

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace

60 / 90

Another Free Space Map Example

INSERT INTO mvcc_demo VALUES (1);

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace

(0,8128)

INSERT INTO mvcc_demo VALUES (2);

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace

(0,8096)

61 / 90

Another Free Space Map Example

DELETE FROM mvcc_demo WHERE val = 2;

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace

(0,8128)

62 / 90

VACUUM Also Removes End-of-File Pages

DELETE FROM mvcc_demo WHERE val = 1;

VACUUM mvcc_demo;

SELECT pg_freespace(’mvcc_demo’);
pg_freespace

SELECT pg_relation_size(’mvcc_demo’);
pg_relation_size

0

VACUUM FULL shrinks the table file to its minimum size, but requires

an exclusive table lock.

63 / 90

Optimized Single-Page Cleanup of Old UPDATE Rows

The storage space taken by old UPDATE tuples can be reclaimed just
like deleted rows. However, certain UPDATE rows can even have their

items reclaimed, i.e., it is possible to reuse certain old UPDATE items,

rather than marking them as “dead” and requiring VACUUM to

reclaim them after removing referencing index entries.

Specifically, such item reuse is possible with special HOT update

(heap-only tuple) chains, where the chain is on a single heap page

and all indexed values in the chain are identical.

64 / 90

Single-Page Cleanup of HOT UPDATE Rows

HOT update items can be freed (marked “unused”) if they are in the

middle of the chain, i.e., not at the beginning or end of the chain. At

the head of the chain is a special “Redirect” item pointers that are

referenced by indexes; this is possible because all indexed values are

identical in a HOT/redirect chain.

Index creation with HOT chains is complex because the chains might

contain inconsistent values for the newly indexed columns. This is
handled by indexing just the end of the HOT chain and allowing the

index to be used only by transactions that start after the index has

been created. (Specifically, post-index-creation transactions cannot

see the inconsistent HOT chain values due to MVCC visibility rules;

they only see the end of the chain.)

65 / 90

Initial Single-Row State

Page Header Item Item Item

Special

8K

Indexes

UnusedUnused

Tuple, v1

66 / 90

UPDATE Adds a New Row

Page Header Item Item Item

Special

8K

Indexes

Unused

Tuple, v2 Tuple, v1

No index entry added because indexes only point to the head of the

HOT chain.
67 / 90

Redirect Allows Indexes To Remain Valid

Page Header Item Item Item

Special

8K

Indexes

Redirect

Tuple, v2 Tuple, v3

68 / 90

UPDATE Replaces Another Old Row

Page Header Item Item Item

Special

8K

Indexes

Redirect

Tuple, v4 Tuple, v3

69 / 90

All Old UPDATE Row Versions Eventually Removed

Page Header Item Item Item

Tuple, v4 Special

8K

Indexes

Redirect Unused

This cleanup was performed by another operation on the same page.

70 / 90

Cleanup of Old Updated Rows

TRUNCATE mvcc_demo;

INSERT INTO mvcc_demo SELECT 0 FROM generate_series(1, 240);

INSERT INTO mvcc_demo VALUES (1);

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Normal | 5437 | 0 | (0,241)

71 / 90

Cleanup of Old Updated Rows

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Normal | 5437 | 5438 | (0,242)
(0,242) | Normal | 5438 | 0 | (0,242)

72 / 90

Cleanup of Old Updated Rows

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+-----------------+------+------+---------
(0,241) | Redirect to 242 | | |
(0,242) | Normal | 5438 | 5439 | (0,243)
(0,243) | Normal | 5439 | 0 | (0,243)

No index entry added because indexes only point to the head of the

HOT chain.

73 / 90

Same as this Slide

Page Header Item Item Item

Special

8K

Indexes

Redirect

Tuple, v2 Tuple, v3

74 / 90

Cleanup of Old Updated Rows

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+-----------------+------+------+---------
(0,241) | Redirect to 243 | | |
(0,242) | Normal | 5440 | 0 | (0,242)
(0,243) | Normal | 5439 | 5440 | (0,242)

75 / 90

Same as this Slide

Page Header Item Item Item

Special

8K

Indexes

Redirect

Tuple, v4 Tuple, v3

76 / 90

Cleanup of Old Updated Rows

-- transaction now committed, HOT chain allows tid

-- to be marked as ‘‘Unused’’

SELECT * FROM mvcc_demo
OFFSET 1000;
val

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+-----------------+------+------+---------
(0,241) | Redirect to 242 | | |
(0,242) | Normal | 5440 | 0 | (0,242)
(0,243) | Unused | | |

77 / 90

Same as this Slide

Page Header Item Item Item

Tuple, v4 Special

8K

Indexes

Redirect Unused

78 / 90

VACUUM Does Not Remove the Redirect

VACUUM mvcc_demo;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+-----------------+------+------+---------
(0,241) | Redirect to 242 | | |
(0,242) | Normal | 5440 | 0 | (0,242)
(0,243) | Unused | | |

79 / 90

Cleanup Using Manual VACUUM

TRUNCATE mvcc_demo;

INSERT INTO mvcc_demo VALUES (1);
INSERT INTO mvcc_demo VALUES (2);
INSERT INTO mvcc_demo VALUES (3);

SELECT ctid, xmin, xmax
FROM mvcc_demo_page0;
ctid | xmin | xmax
-------+------+------
(0,1) | 5442 | 0
(0,2) | 5443 | 0
(0,3) | 5444 | 0

DELETE FROM mvcc_demo;

80 / 90

Cleanup Using Manual VACUUM

SELECT ctid, xmin, xmax
FROM mvcc_demo_page0;
ctid | xmin | xmax
-------+------+------
(0,1) | 5442 | 5445
(0,2) | 5443 | 5445
(0,3) | 5444 | 5445

-- too small to trigger autovacuum

VACUUM mvcc_demo;

SELECT pg_relation_size(’mvcc_demo’);
pg_relation_size

0

81 / 90

The Indexed UPDATE Problem

The updating of any indexed columns prevents the use of “redirect”

items because the chain must be usable by all indexes, i.e., a

redirect/HOT UPDATE cannot require additional index entries due to

an indexed value change.

In such cases, item pointers can only be marked as “dead”, like
DELETE does.

No previously shown UPDATE queries modified indexed columns.

82 / 90

Index mvcc_demo Column

CREATE INDEX i_mvcc_demo_val on mvcc_demo (val);

83 / 90

UPDATE of an Indexed Column

TRUNCATE mvcc_demo;

INSERT INTO mvcc_demo SELECT 0 FROM generate_series(1, 240);
INSERT INTO mvcc_demo VALUES (1);

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Normal | 5449 | 0 | (0,241)

84 / 90

UPDATE of an Indexed Column

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Normal | 5449 | 5450 | (0,242)
(0,242) | Normal | 5450 | 0 | (0,242)

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Dead | | |
(0,242) | Normal | 5450 | 5451 | (0,243)
(0,243) | Normal | 5451 | 0 | (0,243)

85 / 90

UPDATE of an Indexed Column

UPDATE mvcc_demo SET val = val + 1 WHERE val > 0;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Dead | | |
(0,242) | Dead | | |
(0,243) | Normal | 5451 | 5452 | (0,244)
(0,244) | Normal | 5452 | 0 | (0,244)

86 / 90

UPDATE of an Indexed Column

SELECT * FROM mvcc_demo
OFFSET 1000;
val

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Dead | | |
(0,242) | Dead | | |
(0,243) | Dead | | |
(0,244) | Normal | 5452 | 0 | (0,244)

87 / 90

UPDATE of an Indexed Column

VACUUM mvcc_demo;

SELECT * FROM mvcc_demo_page0
OFFSET 240;
ctid | case | xmin | xmax | t_ctid

---------+--------+------+------+---------
(0,241) | Unused | | |
(0,242) | Unused | | |
(0,243) | Unused | | |
(0,244) | Normal | 5452 | 0 | (0,244)

88 / 90

Cleanup Summary

Reuse Non-HOT HOT

Cleanup Heap Item Item Clean Update

Method Triggered By Scope Tuples? State State Indexes? FSM

Single-Page SELECT, UPDATE, single heap yes dead unused no no

DELETE page

VACUUM autovacuum all potential yes unused unused yes yes

or manually heap pages

Cleanup is possible only when there are no active transactions for which
the tuples are visible.
HOT items are UPDATE chains that span a single page and contain identical
indexed column values.
In normal usage, single-page cleanup performs the majority of the cleanup
work, while VACUUM reclaims “dead” item pointers, removes unnecessary
index entries, and updates the free space map (FSM).

89 / 90

Conclusion

https://momjian.us/presentations Escher, Relativity

90 / 90

